Connect with us

Business

Icelandic scientist plan to drill down to magma

Published

on

Is Reform UK's plan to get Farage into No 10 mission impossible?
Getty Images Lava spews from multiple craters of the Sundhnúkur volcano on June 3, 2024 on the Reykjanes peninsula near Grindavik, Iceland. Getty Images

Iceland is one of the world’s most volcanically active places

I’m in one of the world’s volcanic hotspots, northeast Iceland, near the Krafla volcano.

A short distance away I can see the rim of the volcano’s crater lake, while to the south steam vents and mud pools bubble away.

Krafla has erupted around 30 times in the last 1,000 years, and most recently in the mid-1980s.

Bjorn Por Guðmundsson leads me to a grassy hillside. He is running a team of international scientists who plan to drill into Krafla’s magma.

Advertisement

“We’re standing on the spot where we are going to drill,” he says.

The Krafla Magma Testbed (KMT) intends to advance the understanding of how magma, or molten rock, behaves underground.

That knowledge could help scientists forecast the risk of eruptions and push geothermal energy to new frontiers, by tapping into an extremely hot and potentially limitless source of volcano power.

Bjorn Por Guðmundsson speaks to Adrienne Murray with the rim of the Krafla volcano in the distance

Bjorn Por Guðmundsson leads a team planning to drill down to magma under this spot

Starting in 2026 the KMT team will begin drilling the first of two boreholes to create a unique underground magma observatory, around 2.1km (1.3 miles) under the ground.

Advertisement

“It’s like our moonshot. It’s going to transform a lot of things,” says Yan Lavelle, a professor of vulcanology at the Ludvigs-Maximllian University in Munich, and who heads KMT’s science committee.

Volcanic activity is usually monitored by tools like seismometers. But unlike lava on the surface, we don’t know very much about the magma below ground, explains Prof Lavelle.

“We’d like to instrument the magma so we can really listen to the pulse of the earth,” he adds.

Pressure and temperature sensors will be placed into the molten rock. “These are the two key parameters we need to probe, to be able to tell ahead of time what’s happening to the magma,” he says.

Advertisement

Around the world an estimated 800 million people live within 100km of hazardous active volcanoes. The researchers hope their work can help save lives and money.

Iceland has 33 active volcano systems, and sits on the rift where the Eurasian and North American tectonic plates pull apart.

Most recently, a wave of eight eruptions in the Reykanes peninsula has damaged infrastructure and upended lives in the community of Grindavik.

Mr Guðmundsson also points to Eyjafjallajökull, which caused havoc in 2010 when an ash cloud caused over 100,000 flight cancellations, costing £3bn ($3.95bn).

Advertisement

“If we’d been better able to predict that eruption, it could have saved a lot of money,” he says.

Steam rises from pools with snow-capped volcanos in the distance, in northeast in Iceland

Krafla is surrounded by steaming ponds and mud pools

KMT’s second borehole will develop a test-bed for a new generation of geothermal power stations, which exploit magma’s extreme temperature.

“Magma are extremely energetic. They are the heat source that power the hydrothermal systems that leads to geothermal energy. Why not go to the source?” asks Prof Lavelle.

Some 65% of Iceland’s electricity and 85% of household heating, comes from geothermal, which taps hot fluids deep underground, as a source of heat to drive turbines and generate electricity.

Advertisement

In the valley below, the Krafla power plant supplies hot water and electricity to about 30,000 homes.

“The plan is to drill just short of the magma itself, possibly poke it a little bit,” says Bjarni Pálsson with a wry smile.

“The geothermal resource is located just above the magma body, and we believe that is around 500-600C,” says Mr Pálsson, the executive director of geothermal development at national power provider, Landsvirkjun.

Magma is very hard to locate underground, but in 2009 Icelandic engineers made a chance discovery.

Advertisement

They had planned to make a 4.5km deep borehole and extract extremely hot fluids, but the drill abruptly stopped as it intercepted surprisingly shallow magma.

“We were absolutely not expecting to hit magma at only 2.1km depth,” says Mr Pálsson.

Encountering magma is rare and has only happened here, Kenya and Hawaii.

Superheated steam measuring a recording-breaking 452°C shot up, while the chamber was an estimated 900°C.

Advertisement

Dramatic video shows billowing smoke and steam. Acute heat and corrosion eventually destroyed the well.

“This well produced about 10 times more [energy] than the average well in this location,” says Mr Pálsson.

Just two of these could supply the same energy as the power plant’s 22 wells, he notes. “There is an obvious game changer.”

Steel pipes zig-zag across the Icelandic landscape connecting red pods of a geothermal power station

There is a huge demand for geothermal power

More than 600 geothermal power plants are found worldwide, and hundreds more are planned, amid growing demand for round-the-clock low carbon energy. These wells are typically around 2.5km deep, and handle temperatures below 350°C.

Advertisement

Private companies and research teams in several countries are also working towards more advanced and ultra-deep geothermal, called super-hot rock, where temperatures exceed 400°C at depths of 5 to 15km.

Reaching deeper and much hotter, heat reserves is the “Holy Grail”, says Rosalind Archer, the dean of Griffith University, and former director of the Geothermal Institute in New Zealand.

It’s the higher energy density that’s so promising, she explains, as each borehole can produce five to 10 times more power than standard geothermal wells.

“You’ve got New Zealand, Japan and Mexico all looking, but KMT is the closest one to getting drill bit in the ground,” she says. “It’s not easy and it’s not necessarily cheap to get started.”

Advertisement
Snow and ice covers the crater lake at Krafla volcano

Engineers will have to develop new drilling tech to work around volcanos

Drilling into this extreme environment will be technically challenging, and requires special materials.

Prof Lavelle is confident it’s possible. Extreme temperatures are also found in jet engines, metallurgy and the nuclear industry, he says.

“We have to explore new materials and more corrosion resistant alloys,” says Sigrun Nanna Karlsdottir, a professor of industrial and mechanical engineering at the University of Iceland.

Inside a lab, her team of researchers are testing materials to withstand extreme heat, pressure and corrosive gases. Geothermal wells are usually constructed with carbon steel, she explains, but that quickly loses strength when temperatures exceed 200°C.

Advertisement

“We’re focusing on high grade nickel alloys and also titanium alloys,” she says.

Drilling into volcanic magma sounds potentially risky, but Mr Guðmundsson thinks otherwise.

“We don’t believe that sticking a needle into a huge magma chamber is going to create an explosive effect,” he asserts.

“This happened in 2009, and they found out that they’d probably done this before without even knowing it. We believe it’s safe.”

Advertisement

Other risks also need to be considered when drilling into the earth like toxic gases and causing earthquakes, says Prof Archer. “But the geological environment in Iceland makes that very unlikely.”

The work will take years, but could bring advanced forecasting and supercharged volcano power.

“I think the whole geothermal world are watching the KMT project,” says Prof Archer. “It is potentially quite transformative.”

More Technology of Business

Source link

Advertisement
Continue Reading
Advertisement
Click to comment

You must be logged in to post a comment Login

Leave a Reply

Travel

Turkish Airlines offers Middle East customers 25 per cent discount on flights to specific destinations in Türkiye

Published

on

Turkish Airlines offers Middle East customers 25 per cent discount on flights to specific destinations in Türkiye

Turkish Airlines has launched a new “Experience Türkiye” campaign wherein customers from the Middle East who are booking trips to specific destinations within Türkiye can enjoy a 25 per cent discount on flights

Continue reading Turkish Airlines offers Middle East customers 25 per cent discount on flights to specific destinations in Türkiye at Business Traveller.

Source link

Advertisement
Continue Reading

Business

Correction: HK inbound tourists

Published

on

Banker all-nighters create productivity paradox

The total num­ber of inbound tour­ists in Hong Kong is still about 30% lower than in 2018, not 30% of the 2018 level

Source link

Continue Reading

Business

Market reform is energy transition’s forgotten pillar

Published

on

Banker all-nighters create productivity paradox

If the FT’s editorial board thinks pylons and cables are “the forgotten, less sexy, part of the green transition” (FT View, October 9), then electricity market reforms are a real turn-off. Yet these, too, could help us benefit from low-cost renewable electricity, and encourage infrastructure development where it is needed.

For example, the UK’s and Australia’s renewable energy industries have resisted a market reform, called locational marginal pricing, that would make electricity prices reflect local supply and demand.

In the UK, all electricity is sold at the same price on the national spot market. This means even if there is low demand or oversupply in a given area, the price isn’t any cheaper than in a location clamouring for energy.

Moving to a market model that captures where electricity is produced and consumed could reduce the amount paid to generators for unused electricity in parts of the country that don’t use much power, and potentially lower energy bills, according to the regulator Ofgem.

Advertisement

Batteries and new renewable projects would become more attractive in places with low supply and high demand. Smart meters could help households use more electricity at cheaper times of day in their area. Locational pricing also could incentivise energy-intensive businesses like data centres and factories to build their facilities in areas with cheap power, contributing to economic development outside of current demand hubs.

Detractors are concerned renewable investment will decrease because of higher uncertainty. Yet more than half of US capacity falls under locational pricing introduced decades ago. This has not deterred renewable investment. According to the International Renewable Energy Agency, the US added over 200GW of capacity between 2013 and 2023, more than doubling over a decade.

While topical, locational marginal pricing is not the only useful market reform to promote the energy transition. Capacity markets shore up reliable electricity supply even if it is ultimately not dispatched, mitigating the risk of renewable intermittency. Carbon prices, like emissions trading schemes, also help incentivise renewable development by making carbon-intensive power more expensive. While both mechanisms are in use in the UK and Europe, neither has widespread global adoption.

Market reforms are even less visible than pylons and wires, yet they are just as essential for realising the world’s renewable energy potential as fast as possible.

Advertisement

Lucy Shaw
London W8, UK

Source link

Continue Reading

Business

Global economy is out of kilter for a simple reason

Published

on

Banker all-nighters create productivity paradox

Two articles — “China’s ills are serious but not incurable” (Opinion, October 16) and “Global public debt to exceed $100tn this year, says IMF” (Report, October 16) — indicate a global economic system severely out of balance. Neither high savings rates in the east nor exploding governmental borrowing (and cheap money) in the west are able to generate continued economic growth at levels that were achieved in the recent past.

The problem in both cases is inadequate domestic aggregate demand. Curiously the root cause is the same — an excessive concentration of wealth.

Whether it is investing primarily in export-oriented manufacturing or altering tax policy in favour of “the wealth creators”, the result is the same: domestic aggregate demand has been reduced.

Only by a reversal of policy will things change. Whether this is done deliberately or as the result of a “panic” will determine how dramatic the societal dislocations will be.

Advertisement

Guy Wroble
Denver, CO, US

Source link

Continue Reading

Travel

Dis-loyalty and SLS Dubai hotel partner for unique dining experience

Published

on

Dis-loyalty and SLS Dubai hotel partner for unique dining experience

Travel and food membership programme Dis-loyalty hs partnered with SLS Dubai’s Carna to inspire guests to step out of their regular routine and explore more in life, through the introduction of a unique dining experience this October

Continue reading Dis-loyalty and SLS Dubai hotel partner for unique dining experience at Business Traveller.

Source link

Advertisement
Continue Reading

Business

China’s economic growth falters in third quarter

Published

on

China’s economic growth falters in third quarter

Beijing has stepped up stimulus efforts as it seeks to hit full-year GDP target of 5%

Source link

Continue Reading

Trending

Copyright © 2024 WordupNews.com